Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.465
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Res ; 73(2): 239-251, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710061

RESUMO

Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.


Assuntos
Animais Recém-Nascidos , Displasia Broncopulmonar , Modelos Animais de Doenças , Estresse Oxidativo , Pneumonia , Resveratrol , Animais , Resveratrol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Displasia Broncopulmonar/prevenção & controle , Displasia Broncopulmonar/metabolismo , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Ratos , Hiperóxia/complicações , Hiperóxia/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Antioxidantes/farmacologia , Hiper-Reatividade Brônquica/prevenção & controle , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/induzido quimicamente , Ratos Sprague-Dawley , Masculino
2.
J Vis Exp ; (206)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38709040

RESUMO

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Assuntos
Aflatoxinas , Arachis , Fitoalexinas , Sementes , Sesquiterpenos , Estilbenos , Arachis/microbiologia , Arachis/química , Sementes/química , Aflatoxinas/análise , Aflatoxinas/metabolismo , Estilbenos/metabolismo , Estilbenos/análise , Estilbenos/química , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Cromatografia Líquida de Alta Pressão/métodos
3.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
4.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678790

RESUMO

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Assuntos
Bicamadas Lipídicas , Resveratrol , Resveratrol/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Estilbenos/química , Materiais Biomiméticos/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
5.
Photodermatol Photoimmunol Photomed ; 40(3): e12961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676310

RESUMO

BACKGROUND: Environmental ultraviolet radiation has deleterious effects on humans, including sunburn and immune perturbations. These immune changes are involved in skin carcinogenesis. OBJECTIVES: To determine whether nicotinamide riboside and/or pterostilbene administered systemically inhibits inflammatory and immune effects of exposure to mid-range ultraviolet radiation. METHODS: To examine UVB radiation-induced inflammatory effects, mice were fed standard chow/water, 0.04% pterostilbene in chow and 0.2% nicotinamide riboside in drinking water, diet with nicotinamide riboside alone, or diet with pterostilbene alone. After 4 weeks, mice were exposed to UVB radiation (3500 J/m2), and 24-/48-h ear swelling was assessed. We also asked if each agent or the combination inhibits UVB radiation suppression of contact hypersensitivity in two models. Mice were fed standard diet/water or chow containing 0.08% pterostilbene, water with 0.4% nicotinamide riboside, or both for 4 weeks. Low-dose: Half the mice in each group were exposed on the depilated dorsum to UVB radiation (1700 J/m2) daily for 4 days, whereas half were mock-irradiated. Mice were immunized on the exposed dorsum to dinitrofluorobenzene 4 h after the last irradiation, challenged 7 days later on the ears with dinitrofluorobenzene, and 24-h ear swelling assessed. High dose: Mice were treated similarly except that a single dose of 10,000 J/m2 of radiation was administered and immunization was performed on the unirradiated shaved abdomen 3 days later. RESULTS: Nicotinamide riboside and pterostilbene together inhibited UVB-induced skin swelling more than either alone. Pterostilbene alone and both given together could inhibit UVB-induced immune suppression in both the low-dose and high-dose models while nicotinamide riboside alone was more effective in the low-dose model than the high-dose model. CONCLUSION: Nicotinamide riboside and pterostilbene have protective effects against UVB radiation-induced tissue swelling and immune suppression.


Assuntos
Niacinamida , Niacinamida/análogos & derivados , Compostos de Piridínio , Estilbenos , Raios Ultravioleta , Animais , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Camundongos , Raios Ultravioleta/efeitos adversos , Estilbenos/farmacologia , Feminino , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Dermatite de Contato/etiologia
6.
Phytomedicine ; 128: 155316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518635

RESUMO

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Assuntos
Movimento Celular , Proliferação de Células , Janus Quinase 2 , Camundongos Nus , Fator de Transcrição STAT3 , Transdução de Sinais , Estilbenos , Neoplasias Gástricas , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Estilbenos/farmacologia , Animais , Humanos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Farmacologia em Rede , Masculino , Metástase Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos
7.
Biomed Pharmacother ; 174: 116476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520872

RESUMO

BACKGROUND: Increasing global overweight and obesity rates not only increase the prevalence of myocardial infarction (MI), but also exacerbate ischemic injury and result in worsened prognosis. Currently, there are no drugs that can reverse myocardial damage once MI has occurred, therefore discovering drugs that can potentially limit the extent of ischemic damage to the myocardium is critical. Resveratrol is a polyphenol known for its antioxidant properties, however whether prolonged daily intake of resveratrol during obesity can protect against MI-induced damage remains unexplored. METHODS: We established murine models of obesity via high-fat/high-fructose diet, along with daily administrations of resveratrol or vehicle, then performed surgical MI to examine the effects and mechanisms of resveratrol in protecting against myocardial ischemic injury. RESULTS: Daily administration of resveratrol in obese mice robustly protected against myocardial ischemic injury and improved post-MI cardiac function. Resveratrol strongly inhibited oxidative and DNA damage via activating SIRT3/FOXO3a-dependent antioxidant enzymes following MI, which were completely prevented upon administration of 3-TYP, a selective SIRT3 inhibitor. Hence, the cardioprotective effects of prolonged resveratrol intake in protecting obese mice against myocardial ischemic injury was due to reestablishment of intracellular redox homeostasis through activation of SIRT3/FOXO3a signaling pathway. CONCLUSION: Our findings provide important new evidence that supports the daily intake of resveratrol, especially in those overweight or obese, which can robustly decrease the extent of ischemic damage following MI. Our study therefore provides new mechanistic insight and suggests the therapeutic potential of resveratrol as an invaluable drug in the treatment of ischemic heart diseases.


Assuntos
Proteína Forkhead Box O3 , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Oxirredução , Resveratrol , Transdução de Sinais , Sirtuína 3 , Animais , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/complicações , Proteína Forkhead Box O3/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Antioxidantes/farmacologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/tratamento farmacológico , Cardiotônicos/farmacologia , Estilbenos/farmacologia , Estilbenos/uso terapêutico
8.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542908

RESUMO

Oxyresveratrol is one of the active ingredients derived from mulberry branch with strong anti-inflammatory bioactivity. In this research, we want to explore if oxyresveratrol can improve cognitive impairments and episodic-like memory and its mechanism. In LPS-induced BV-2 cells, 25 µM OXY can significantly inhibit the expression of NO and alter the M1/M2 polarization by regulating M1/M2 phenotype makers. In vivo, OXY (50, 100 mg/kg) significantly reversed cognitive impairments and alleviated neuronal injuries caused by neuroinflammation. According to network pharmacology analysis, OXY alleviated neuroinflammation via the PI3K-Akt pathway. In general, the research revealed that OXY can improve cognitive impairments and episodic-like memory through alleviating LPS-induced neuroinflammation and regulating the PI3K-Akt signaling pathway.


Assuntos
Disfunção Cognitiva , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Estilbenos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Microglia/metabolismo
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124090, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428163

RESUMO

(-)-Epicatechin gallate (ECG) and piceatannol (PIC) are commonly polyphenols with excellent biological activities. ß-Lactoglobulin (BLG) is a food-grade globule protein and its morphologies are sensitive to pH. This study used experimental and computational methods to determine the interaction of single or combined ECG and PIC with BLG at different pHs. The static quenching process was determined through fluorescence and ultraviolet-visible spectroscopy. Compared with ECG, PIC could significantly bind to BLG with higher affinity. Their binding affinity for BLG with different morphologies followed the tendency of monomer > dimer > tetramer. The negative contribution of van der Waals forces, electrostatic interactions, and hydrogen bonds to ΔHo exceeded the positive contribution of hydrophobic interactions in the spontaneous and exothermic process. The reduced binding affinity in the ternary systems demonstrated the competitive binding between ECG and PIC on BLG, and the hinder effect of ECG or PIC was enhanced with increasing pH. Molecular docking studies revealed the same binding sites of ECG and PIC on various conformations of BLG and identical driven forces as thermodynamic results. Tryptophan and tyrosine were the main participators in the BLG + ECG and BLG + PIC systems, respectively. The conformational changes in the binary and ternary systems could be ascertained through synchronous fluorescence, circular dichroism, and dynamic light scattering. Furthermore, the effects of pH and BLG encapsulation on the antioxidant capacity and stability of ECG or PIC were also implemented. ECG or PIC was the most stable in the (BLG + PIC) + ECG system at pH 6.0. This study could clarify the interaction mechanism between ECG/PIC and BLG and elucidate the pH effect on their binding information. The results will provide basic support for their usage in food processing and applications.


Assuntos
Antioxidantes , Catequina/análogos & derivados , Lactoglobulinas , Estilbenos , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Lactoglobulinas/química , Dicroísmo Circular , Ligação Proteica
10.
Bioorg Med Chem ; 103: 117684, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493731

RESUMO

Glioblastoma multiforme (GBM) is a prevalent primary brain tumor. However, no specific therapeutic drug has been developed for it. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor involved in the cellular response to oxidative stress. Numerous studies have demonstrated that Nrf2 plays a pivotal role in GBM angiogenesis, and inhibiting Nrf2 can significantly enhance patient prognosis. Using virtual screening technology, we examined our in-house library and identified pinosylvin as a potential compound with high activity. Pinosylvin exhibited robust hydrogen bond and Π-Π interaction with Nrf2. Cell experiments revealed that pinosylvin effectively reduced the proliferation of U87 tumor cells by regulating Nrf2 and demonstrated greater inhibitory activity than temozolomide. Consequently, we believe that this study will offer valuable guidance for the future development of highly efficient therapeutic drugs for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fitoalexinas , Estilbenos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Fator 2 Relacionado a NF-E2 , Linhagem Celular Tumoral , Temozolomida , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
11.
Asian Pac J Cancer Prev ; 25(3): 939-949, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546076

RESUMO

OBJECTIVES: This research aims to comparatively investigate the capability of resveratrol (RES) and RES analogues, oxyresveratrol (Oxy-RES) and dihydrooxyresveratrol (DHoxy-RES), to potentiate doxorubicin (DOX) effects against lung carcinoma epithelial cells. METHODS: All experiments were performed on lung carcinoma cell lines (A549) with DOX combination between DOX and RES or RES analogues. Cell viability or growth inhibitory effect was assessed by MTT assay and genes associated with survival and metastasis were monitored by real-time polymerase chain reaction (RT-PCR). RESULTS: DOX obviously demonstrated cytotoxic and anti-metastatic activities against A549 cells. Expression of gene-associated with both activities was potentiated by RES and RES analogues. Oxy-RES showed highest capability to potentiate DOX effects. DHoxy-RES showed nearly no effect to DOX activities. CONCLUSIONS: These results provided an important basis of DOX combination with RES analogues, especially Oxy-RES, for better therapeutic effect. Further studies in human should be performed on exploring combination of DOX and Oxy-RES.


Assuntos
Carcinoma , Neoplasias Pulmonares , Extratos Vegetais , Estilbenos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Resveratrol/farmacologia , Doxorrubicina/farmacologia , Pulmão/patologia , Linhagem Celular Tumoral , Apoptose
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473857

RESUMO

Anticancer agents are playing an increasing role in the treatment of gastric cancer (GC); however, novel anticancer agents have not been fully developed. Therefore, it is important to investigate compounds that improve sensitivity to the existing anticancer drugs. We have reported that pterostilbene (PTE), a plant stilbene, enhances the antitumor effect of low doses of sunitinib in gastric cancer cells accumulating mitochondrial iron (II) (mtFe) at low doses. In this study, we investigated the relationship between the mtFe deposition and the synergistic effect of PTE and different anticancer drugs. For this study, we used 5-fluorouracil (5FU), cisplatin (CPPD), and lapatinib (LAP), which are frequently used in the treatment of GC, and doxorubicin (DOX), which is known to deposit mtFe. A combination of low-dose PTE and these drugs suppressed the expression of PDZ domain-containing 8 (PDZD8) and increased mtFe accumulation and mitochondrial H2O2. Consequently, reactive oxygen species-associated hypoxia inducible factor-1α activation induced endoplasmic reticulum stress and led to apoptosis, but not ferroptosis. In contrast, 5FU and CDDP did not show the same changes as those observed with PTE and DOX or LAP, and there was no synergistic effect with PTE. These results indicate that the combination of PTE with iron-accumulating anticancer drugs exhibits a strong synergistic effect. These findings would help in developing novel therapeutic strategies for GC. However, further clinical investigations are required.


Assuntos
Antineoplásicos , Estilbenos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Peróxido de Hidrogênio/metabolismo , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Apoptose , Mitocôndrias/metabolismo , Estilbenos/farmacologia , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
Bioorg Chem ; 146: 107255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457955

RESUMO

Monoaminooxidases (MAOs) are important targets for drugs used in the treatment of neurological and psychiatric disorders and particularly on Parkinson's Disease (PD). Compounds containing a trans-stilbenoid skeleton have demonstrated good selective and reversible MAO-B inhibition. Here, twenty-two (Z)-3-benzylidenephthalides (benzalphthalides, BPHs) displaying a trans-stilbenoid skeleton have been synthesised and evaluated as inhibitors of the MAO-A and MAO-B isoforms. Some BPHs have selectively inhibited MAO-B, with IC50 values ranging from sub-nM to µM. The most potent compound with IC50 = 0.6 nM was the 3',4'-dichloro-BPH 16, which showed highly selective and reversible MAO-B inhibitory activity. Furthermore, the most selective BPHs displayed a significant protection against the apoptosis, and mitochondrial toxic effects induced by 6-hydroxydopamine (6OHDA) on SH-SY5Y cells, used as a cellular model of PD. The results of virtual binding studies on the most potent compounds docked in MAO-B and MAO-A were in agreement with the potencies and selectivity indexes found experimentally. Additionally, related to toxicity risks, drug-likeness and ADME properties, the predictions found for the most relevant BPHs in this research were within those ranges established for drug candidates.


Assuntos
Neuroblastoma , Doença de Parkinson , Estilbenos , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Doença de Parkinson/tratamento farmacológico , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Relação Estrutura-Atividade , Compostos de Benzil/síntese química , Compostos de Benzil/química , Compostos de Benzil/farmacologia
14.
FEBS Lett ; 598(9): 995-1007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413095

RESUMO

Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (Kd, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR). Preconditioning with low concentrations (0.01-10 nm) of these polyphenols, especially resveratrol-glucuronide, protected neuronal cells from death induced by serum withdrawal via activation of cAMP-mediated signaling pathways. This protection was prevented by a 67LR-blocking antibody, suggesting a role for this cell-surface receptor in neuroprotection by resveratrol metabolites.


Assuntos
Fármacos Neuroprotetores , Receptores de Laminina , Resveratrol , Resveratrol/farmacologia , Resveratrol/metabolismo , Resveratrol/química , Receptores de Laminina/metabolismo , Receptores de Laminina/genética , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Simulação de Acoplamento Molecular , Animais , Ligação Proteica , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Estilbenos/farmacologia , Estilbenos/metabolismo , Estilbenos/química , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sítios de Ligação , Glucuronídeos/metabolismo , Glucuronídeos/química , Proteínas Ribossômicas
15.
Chem Biol Drug Des ; 103(2): e14458, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38383061

RESUMO

JNK3, a neuronal kinase activated by stress, plays a role in stress-induced apoptosis, leading to neuronal cell death following cerebral ischemia. This study investigates the neuroprotective effects of piceatannol (PCT) in SHSY-5Y neuroblastoma cells after hypoxic injury and its interaction with JNK3. We analyzed the crystal coordinates, interaction energies, and amino acid interactions to determine PCT's selectivity for JNK3. The electrostatic potential was computed using density functional theory, while molecular dynamics assessed the stability and structural consistency of the JNK3-PCT complex. We used SP600125 (SP6), a JNK3 inhibitor, as a reference compound. Additionally, we performed cell-free JNK 1, 2, and 3 kinase assays to evaluate the isoform selectivity of PCT. Cytotoxicity and cell viability were determined by an MTT test. To assess apoptosis, we used acridine orange/ethidium bromide dual fluorescent labeling and ANNEXIN A5-FITC flow cytometry. Western blot was used to evaluate the attenuation of JNK3 and apoptotic proteins. In silico studies revealed a stronger binding affinity between PCT and JNK3 compared to JNK1 and JNK2, which was further supported by the in vitro kinase assay. PCT-treated cells exhibited a decrease in Cyt-c and caspase-3 expression and an increase in Bcl-2 level, compared to hypoxic control (p < .001). PCT also demonstrated superior efficacy over SP6 in inhibiting JNK3 phosphorylation (p < .001). Furthermore, PCT significantly increased the expression of neuronal genes, including NgN1, neuroD2, and survivin (p < .001). In conclusion, PCT is a potential JNK3 inhibitor, since it inhibited phosphorylation and the Bcl-2/Cyt-C/caspase-3-dependent apoptotic pathway after ischemic/hypoxic insult.


Assuntos
Caspases , Oxigênio , Estilbenos , Caspase 3 , Caspases/farmacologia , Proteína Quinase 10 Ativada por Mitógeno/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Apoptose , Linhagem Celular
16.
Cell Biochem Funct ; 42(2): e3956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403920

RESUMO

Pterostilbene (PTE, trans-3,5-dimethoxy-4'-hydroxystilbene), a natural plant polyphenol, possesses numerous pharmacological effects, including antioxidant, antidiabetic, antiatherosclerotic, and neuroprotective aspects. This study aims to investigate whether PTE plays a protective role against oxidative stress injury by GAS6/Axl signaling pathway in cardiomyocytes. Hydrogen peroxide (H2 O2 )-induced oxidative stress HL-1 cells were used as models. The mechanism by which PTE protected oxidative stress is investigated by combining cell viability, cell ROS levels, apoptosis assay, molecular docking, quantitative real-time PCR, and western blot analysis. GAS6 shRNA was performed to investigate the involvement of GAS6/Axl pathways in PTE's protective role. The results showed that PTE treatment improved the cell morphology and viability, and inhibited the apoptosis rate and ROS levels in H2 O2 -injured HL-1 cells. Particularly, PTE treatment upregulated the levels of GAS6, Axl, and markers related to oxidative stress, apoptosis, and mitochondrial function related. Molecular docking showed that PTE and GAS6 have good binding ability. Taken together, PTE plays a protective role against oxidative stress injury through inhibiting oxidative stress and apoptosis and improving mitochondrial function. Particularly, GAS6/Axl axis is the surprisingly prominent in the PTE-mediated pleiotropic effects.


Assuntos
Receptor Tirosina Quinase Axl , Estresse Oxidativo , Receptores Proteína Tirosina Quinases , Estilbenos , Apoptose , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Camundongos , Estilbenos/farmacologia , Linhagem Celular
17.
Chembiochem ; 25(8): e202400132, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38416537

RESUMO

A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a ß-5 phenylcoumaran lignin dimer. The reaction products did not contain glutathione, indicating a catalytic role for reduced glutathione in this enzyme. Three reaction products were identified: the major product was a cis-stilbene arising from C-C fragmentation involving loss of formaldehyde; two minor products were an alkene arising from elimination of glutathione, and an oxidised ketone, proposed to arise from reaction of an intermediate with molecular oxygen. Testing of the recombinant enzyme against a soda lignin revealed the formation of new signals by two-dimensional NMR analysis, whose chemical shifts are consistent with the formation of a stilbene unit in polymeric lignin.


Assuntos
Lignina , Estilbenos , Lignina/metabolismo , Éter , Agrobacterium/metabolismo , Éteres/química , Etil-Éteres , Glutationa/metabolismo
18.
Biochem Biophys Res Commun ; 700: 149598, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38308910

RESUMO

Myocardial tissue ischemia damages myocardial cells. Although reperfusion is an effective technique to rescue myocardial cell damage, it may also exacerbate myocardial cell damage. Ferroptosis, an iron-dependent cell death, occurs following myocardial ischemia-reperfusion (I/R). Piceatannol (PCT) is a natural stilbene compound with excellent antioxidant properties that protect against I/R injury and exerts protective effects against ferroptosis-induced cardiomyocytes following I/R injury; however, the exact mechanism remains to be elucidated. PURPOSE: This study aims to investigate the protective effect and mechanism of PCT on myocardial ischemia-reperfusion injury. METHODS: An ischemia-reperfusion model was established via ligation of the left anterior descending branch of mice's hearts and hypoxia-reoxygenation (H/R) of cardiomyocytes. RESULTS: During ischemia-reperfusion, Nuclear factor E2-related factor 2 (Nrf-2) expression was downregulated, the left ventricular function was impaired, intracellular iron and lipid peroxidation product levels were elevated, and cardiomyocytes underwent ferroptosis. Furthermore, ferroptosis was enhanced following treatment with an Nrf-2 inhibitor. After PCT treatment, Nrf-2 expression significantly increased, intracellular ferrous ions and lipid peroxidation products significantly reduced, Ferroportin1 (FPN1) expression increased, and transferrin receptor-1 (TfR-1) expression was inhibited. CONCLUSIONS: PCT regulates iron metabolism through Nrf-2 to protect against myocardial cell ferroptosis induced by myocardial I/R injury.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Estilbenos , Animais , Camundongos , Isquemia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Estilbenos/farmacologia
19.
J Enzyme Inhib Med Chem ; 39(1): 2315227, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38421003

RESUMO

Pterostilbene (PST) is a naturally derived stilbene compound in grapes, blueberries, and other fruits. It is also a natural dietary compound with a wide range of biological activities such as antioxidant, anti-inflammatory, antitumor, and so on. Structural modifications based on the chemical scaffold of the pterostilbene skeleton are of great importance for drug discovery. In this study, pterostilbene skeletons were used to design novel anti-inflammatory compounds with high activity and low toxicity. A total of 30 new were found and synthesised, and their anti-inflammatory activity and safety were screened. Among them, compound E2 was the most active (against NO: IC50 = 0.7 µM) than celecoxib. Further studies showed that compound E2 exerted anti-inflammatory activity by blocking LPS-induced NF-κB/MAPK signalling pathway activation. In vivo experiments revealed that compound E2 had a good alleviating effect on acute colitis in mice. In conclusion, compound E2 may be a promising anti-inflammatory lead compound.


Assuntos
Transdução de Sinais , Estilbenos , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Estilbenos/farmacologia , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia
20.
Phytother Res ; 38(4): 2041-2076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38391022

RESUMO

In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.


Assuntos
Curcumina , Ferroptose , Neoplasias , Estilbenos , Fenóis/farmacologia , Fenóis/uso terapêutico , Ferro , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA